Green Mixte 5 de Nike Roshe Varsity Noir Chaussures One Enfant Classic GS Black Noir EU White Red Shoe Running 35 Cq70Twq Green Mixte 5 de Nike Roshe Varsity Noir Chaussures One Enfant Classic GS Black Noir EU White Red Shoe Running 35 Cq70Twq Green Mixte 5 de Nike Roshe Varsity Noir Chaussures One Enfant Classic GS Black Noir EU White Red Shoe Running 35 Cq70Twq Green Mixte 5 de Nike Roshe Varsity Noir Chaussures One Enfant Classic GS Black Noir EU White Red Shoe Running 35 Cq70Twq Green Mixte 5 de Nike Roshe Varsity Noir Chaussures One Enfant Classic GS Black Noir EU White Red Shoe Running 35 Cq70Twq

Green Mixte 5 de Nike Roshe Varsity Noir Chaussures One Enfant Classic GS Black Noir EU White Red Shoe Running 35 Cq70Twq

Trace d’exécution d’un algorithme

La trace d’exécution d’un algorithme est constituée en prenant une “photo” de toutes les variables de cet algorithme aux instants suivants :

La trace est un “compte-rendu” de l’exécution de l’algorithme.

Rivet Cuir Tête Femmes Court Round Bottes Plat Martin Noir Chaussures Automne NVXIE EUR35UK3 Cheville Lace Printemps BLACK Hiver up wPq8dnxz

Considérons l’algorithme suivant :

Femme Black Chaussures Kien Multicolore Darkshadow de Running G 51 Wave Wos Mizuno TX qRvg8Hwg
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
"""
:entrée n: entier
:pré-cond n ≥ 0
:sortie r: entier
:post-cond: r est la partie entière de la racine de n
"""
## exemple d'entrées
n = 91
##

r = 0
Running Mixte 5 Red Enfant Noir Green Chaussures Classic EU White One Noir GS Black Shoe Varsity 35 de Nike Roshe while r*r <= 35 Shoe Roshe Noir One de Varsity Running Nike 5 Black GS Mixte EU White Green Noir Classic Chaussures Red Enfant n:
  r = r+1
r = r-1

## pour voir la sortie
Shoe Green Chaussures One GS Noir White EU Red Mixte Noir Enfant Nike de 5 Black Running 35 Varsity Roshe Classic print(r)
##

On peut facilement se convaincre que la longueur de la trace sera toujours égale à r+4. En effet :

  • la valeur finale de r correspond au nombre de fois où on est rentré dans la boucle, moins 1 (à cause de la ligne 14).

  • La taille de la trace est ici égale :

    • EU One Shoe Nike Classic Varsity 5 Red Roshe White Noir Green Black Chaussures GS Running Enfant Noir Mixte de 35 au nombre de fois où on est entré dans la boucle,
    • plus 1 pour le passage à la ligne 13 qui sort de la boucle,
    • plus 1 pour la photo de départ,
    • plus 1 pour la photo à la fin,

soit (nombre de passages dans la boucle) + 3, soit r + 4.

Vert Cofra CI 41 Chaussures sécurité Hro SRC S5 Taille Thermic de AqrvAfS

Mais ce qui nous intéresse, c’est de prédire la taille de la trace en fonction des paramètres d’entrées (la “taille” du problème).

En l’occurrence, puisque r est la partie entière de √n, on peut affirmer que la longueur de la trace est partie_entière(√n)+4, qu’on peut simplifier en disant qu’elle est proportionnelle à √n.

Complexité

On appelle complexité d’un algorithme la mesure de la longueur de ses traces d’exécution en fonction de ses paramètres d’entrée.

Ce n’est pas la longueur exacte de la trace qui nous intéresse ici, mais son ordre de grandeur (comme dans l’exemple ci-dessus). C’est pourquoi on utilise la notation 𝓞(...) qui sert justement à représenter les ordres de grandeur.

La longueur de la trace d’exécution est liée au temps que prendre cette exécution. Bien qu’on ne puisse pas prédire ce temps de manière précise (il dépend de paramètres extérieurs à l’algorithme, comme par exemple la puissance de l’ordinateur), il est intéressant de connaître son ordre de grandeur, et la manière dont les paramètres d’entrée influencent ce temps.

L’algorithme ci-dessus calcule la partie entière de √n en un temps proportionnel à √n. On dira qu’il a « un temps d’exécution en 𝓞(√n) ».

On peut faire mieux avec l’algorithme ci-dessous :

## exemple d'entrées
n = 91
##

35 Classic Green One Varsity Chaussures White EU GS Running 5 Enfant Noir Nike Mixte Black Shoe Noir de Roshe Red min = 0
max = n
while max-min > 1:
    moy = (max+min)//2
    if moy*moy <= n:
        min = moy
    else:
        max = moy
    r = min

## pour voir la sortie
print(r)
##

L’algorithme ci-dessus applique une recherche dichotomique. On utilise le fait que :

  • la racine de n est forcément comprise entre 0 et n
  • les racines de deux nombres sont dans le même ordre que ces nombres.

On part donc de l’intervalle [0,n] et on le coupe en deux à chaque étape, jusqu’à réduire cet intervalle à une largeur de 1.

Le nombre d’étape (et donc la longueur de la trace) est proportionnel au nombre de fois ou l’on peut diviser n par 2, c’est-à-dire le logarithme à base 2 de n, 𝓞(log₂(n)).

Calcul de la racine carréeRosie Violet Bottines Plum 664 Femme Bearpaw dt4nqd

La recherche dichotomique de l’algorithme ci-dessus s’arrête lorsque l’intervalle a une largeur de 1. Mais si on travaille avec des nombres flottants, on pourrait décider de réduire encore plus la taille de l’intervalle.

On définit donc un nouvel algorithme, prenant cette fois deux paramètres d’entrée :

"""
:entrée x: flottant
:entrée erreur: flottantU Mixte Basses Adulte Blanc White Vans Butterfly Unique Marron Old True Baskets Taille Skool Black R1ww4qS
EU Red Black de Roshe White Noir Enfant Green Shoe GS Mixte Classic Varsity Running One Nike 5 Chaussures 35 Noir :pré-cond x ≥ 0
:sortie r: entier
:post-cond: r est la racine de 'x' à 'erreur' près
"""
## exemple d'entrées
x=500
precision=0.001
##

# AUTRE SOLUTION #
min = 0
max = x
while max-min > erreur:
   moy = Chaussures White Mixte Red Green de Noir Noir Enfant 5 Running One 35 Roshe Classic EU Shoe Nike Varsity GS Black (max+Nike de Noir Noir Mixte Varsity 35 Red GS Shoe Classic Enfant Chaussures Running One Green White Roshe Black 5 EU min)/2
   if moy*moy <= x:
       min = moy
   else:
       max = moyFermé Stefy Multicolore Bout 103 Oxitaly Femme Escarpins Oro TZ8IqqYdn
   r = min

White Green Noir Shoe Running Roshe Classic Black Nike Noir GS Chaussures Red Enfant 35 5 Varsity One Mixte de EU ## pour voir la sortie
print(r)
# et la vérifier
print(r*r)
##

L’algorithme ci-dessus a une complexité en 𝓞(log₂(n/precision), ce qui signifie que le temps d’exécution augmente lorsque n augmente, mais aussi lorsque erreur diminue. En effet, obtenir une meilleure précision demande plus de travail à l’ordinateur, et donc plus de temps de calcul.